Abstract

We performed in silico calculations of electrical conductivity of quasi-2D SnO2 thin films with a (110) surface-prospect material for sensitive element of gas sensors. Electronic structure, charge transfer and chemoresistive response of quasi-2D SnO2 thin films during adsorption of alcohol molecules (ethanol, methanol, isopropanol and butanol) and ketones (acetone, cyclopentanone and cyclohexanone) were calculated. It was found that the electrical conductivity of quasi-2D SnO2 thin films decreases within 4-15% during adsorption of analytes. The influence of temperature on the concentration of analytes on the surface of quasi-2D SnO2 thin films was explored in dependence analyte's type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.