Abstract

In the Gran Paradiso metagranodiorite (Western Alps) small scale lower amphibolite facies shear zones record the transition from a mylonite composed of polycrystalline mineral aggregates to a homogeneous ultramylonite with a grain scale phase mixture. Polycrystalline quartz aggregates in the mylonite deform by dislocation creep developing a crystallographic preferred orientation (CPO) and a monoclinic surface orientation distribution function (ODF). The polymineralic matrix of the mylonite and the ultramylonite deform by diffusion creep. In the ultramylonite the quartz CPO is randomized and the surface ODF becomes orthorhombic. The transition from mylonite to ultramylonite is accompanied by a grain size decrease and a disintegration of quartz aggregates, concomitant with the precipitation of K-feldspar (±biotite) between quartz grains. In quartz, reduction from the dynamically recrystallized grain size in the aggregates (110 μm) to the size of the dispersed grains in the ultramylonite (25 μm) occurs through the following processes: K-feldspar precipitates at opening sites along grain boundaries (strain incompatibility) pinning the grain size in quartz aggregates. Coalescence of K-feldspar leads to enhanced grain boundary sliding and disintegration of the quartz aggregates. Solution precipitation reduces the size of the dispersed grains to less than subgrain size (∼45 μm).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.