Abstract

Crystallographic preferred orientation (CPO) and shape fabrics of dynamically recrystallized quartz are currently used as shear sense indicators. We show that the CPO and shape fabric in a polyphase rock do not necessarily indicate the shear sense at the global scale of the shear zone but rather at the local scale of the deforming and recrystallizing quartz aggregates. In lower amphibolite facies shear zones in the Gran Paradiso metagranodiorite, magmatic quartz grains have recrystallized dynamically by subgrain rotation and grain boundary migration and deform inside a very fine-grained feldspar–mica matrix. The quartz CPO has a peripheral [c]-axis maximum inclined synthetically with the local shear sense. The orientation of the surface fabric is related to the orientation of the [c]-axis maximum and the microscopic shear sense in the quartz aggregate. The geometry of the surface fabric ranges from monoclinic to symmetric depending on the relative contribution of grain boundary migration. It is inferred that flow partitioning between the quartz aggregates and the matrix controls the local kinematics. CPOs are only reliable shear sense indicators in polyphase rocks if the most highly strained parts are analyzed where spin of the aggregates with respect to the shear zone boundary has ceased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.