Abstract

Quartz crystal microbalance (QCM) biosensors for recombinant human interferon-β (rhIFN-β) were constructed by utilizing antisense peptides adhering to the QCM gold surfaces. Two antisense peptides, both corresponding to the N-terminal fragment 1–14 of rhIFN-β, were used in this study. Antisense peptide AS-1 was the original antisense peptide and AS-2 was the modified antisense peptide based on the antisense peptide degeneracy. Both antisense peptides were immobilized on the gold electrodes of piezoelectric crystals, respectively, via a self-assembling monolayer of 1,2-ethanedithiol. The binding affinity between rhIFN-β and each immobilized antisense peptide in solution was evaluated using a quartz crystal microbalance-flow injection analysis (QCM-FIA) system. The dissociation constant of rhIFN-β on the antisense peptide AS-1 and AS-2 biosensor was (1.89 ± 0.101) × 10 −4 and (1.22 ± 0.0479) ×10 −5 mol L −1, respectively. The results suggested that AS-2 had a higher binding affinity to rhIFN-β than AS-1. The detection for rhIFN-β using each biosensor was precise and reproducible. The linear response ranges of rhIFN-β binding to both biosensors were same with a concentration range of 0.12–0.96 mg mL −1. The results demonstrated the successful construction of highly selective QCM biosensors using antisense peptide approach, and also confirmed the feasibility of increasing antisense peptide binding affinity by appropriate sequence modification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.