Abstract
We study vacuum of QCD in this work. The structure of non-local quark vacuum condensate, values of various local quark and gluon vacuum condensates, quark-gluon mixed vacuum condensate, quark and gluon virtuality in QCD vacuum state, quark dynamical mass and susceptibility of QCD vacuum state to external field are predicted by use of the solutions of Dyson–Schwinger equations in “rainbow" approximation with a modeling gluon propagator and three different sets of quark-quark interaction parameters. Our theoretical predictions are in good agreement with the correspondent empirical values used widely in literature, and many other theoretical calculations. The quark propagator and self-energy functions are also obtained from the numerical solutions of Dyson–Schwinger equations. This work is centrally important for studying non-perturbative QCD, and has many important applications both in particle and nuclear physics.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have