Abstract

Semi-inclusive deep inelastic scattering on nuclear targets is an ideal tool to study the energy loss effect of an outgoing quark in a nuclear medium. By means of the short hadron formation time, the experimental data with quark hadronization occurring outside the nucleus are picked out. A leading-order analysis is performed for the hadron multiplicity ratios as a function of the energy fraction on helium, neon, and copper nuclei relative to deuteron for the various identified hadrons. It is shown that the nuclear effects on parton distribution functions can be neglected. It is found that the theoretical results considering the nuclear modification of fragmentation functions due to quark energy loss are in good agreement with the experimental data. Whether the quark energy loss is linear or quadratic with the path length is not determined. The obtained energy loss per unit length is $0.38\ifmmode\pm\else\textpm\fi{}0.03$ GeV/fm for an outgoing quark by the global fit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.