Abstract

We discuss a general notion of quantum correlations in fermionic or bosonic indistinguishable particles. Our approach is mainly based on the identification of the algebra of single-particle observables, which allows us to devise an activation protocol in which the \textit{quantumness of correlations} in the system leads to a unavoidable creation of entanglement with the measurement apparatus. Using the distillable entanglement, or the relative entropy of entanglement, as entanglement measure, we show that our approach is equivalent to the notion of minimal disturbance in a single-particle von Neumann measurement, also leading to a geometrical approach for its quantification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.