Abstract
Measures of entanglement can be employed for the analysis of numerous quantum information protocols. Due to computational convenience, logarithmic negativity is often the choice in the case of continuous variable systems. In this work, we analyse a continuous variable measurement-based entanglement distillation experiment using a collection of entanglement measures. This includes: logarithmic negativity, entanglement of formation, distillable entanglement, relative entropy of entanglement, and squashed entanglement. By considering the distilled entanglement as a function of the success probability of the distillation protocol, we show that the logarithmic negativity surpasses the bound on deterministic entanglement distribution at a relatively large probability of success. This is in contrast to the other measures which would only be able to do so at much lower probabilities, hence demonstrating that logarithmic negativity alone is inadequate for assessing the performance of the distillation protocol. In addition to this result, we also observed an increase in the distillable entanglement by making use of upper and lower bounds to estimate this quantity. We thus demonstrate the utility of these theoretical tools in an experimental setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.