Abstract
Quantum-chemical studies of ethene, propene and isobutene chemisorption at an aluminosilicate Bronsted-acid site in the zeolite chabazite are reported. Comparison of the results using different cluster models and a qm/mm (quantum mechanical/molecular mechanical) embedded cluster approach are compared and contrasted. As in previous studies, the activation barriers for the chemisorption process leading to a surface alkoxide are found to follow a carbenium ion trend, i.e. ethene>propene>isobutene. In contrast to previous studies, however, results indicate that the stability of the alkoxide is also very sensitive to a number of factors, the dominant one being steric interactions with the acid site, i.e. the stability order is ethene>propene>isobutene. This steric effect and other, less dominant, contributions are only observed when host environment effects are included in the model, in the present case via constraints on the cluster boundaries and via the qm/mm embedded-cluster approach. The possible formation of stable carbenium ions in the pores of acidic zeolites is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Chemical Society, Faraday Transactions
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.