Abstract

As a new quantum computing model, quantum walk has been widely studied in recent years. It consists of discrete time quantum walk and continuous time quantum walk. Discrete time quantum walk includes coin quantum walk and scattering quantum walk. Meanwhile as a quantum search algorithm, Grover algorithm can search an unsorted database in time complexity of O(√N) . Recent years quantum walk has been used to solve search problems and some of them have been proved to be as efficient as Grover algorithm. Making full use of the novel properties of quantum walk, the quantum walk search algorithms on the 2D grid and hypercube have been proposed. Inspired by phase matching condition of Grover algorithm, we propose a new quantum walk search algorithm which is based on coin quantum walk. Firstly we give the graph to the quantum walk, and then describe the algorithm in detail. Algorithm uses different coin operators and shift operators for two different cases and draws the corresponding iteration operators. Then we prove that iteration operators used in the algorithm are unitary operators. Then we analyze the time complexity and probability of success of the algorithm. Analysis indicates that the time complexity of the algorithm is the same as that of Grover algorithm, however when the targets to be searched are more than 1/3 of the total targets, the algorithm probability of success is greater than that of Grover algorithm. Finally we give the circuit implementation of the algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call