Abstract
Grover's quantum search algorithm provides a way to speed up combinatorial search, but is not directly applicable to searching a physical database. Nevertheless, Aaronson and Ambainis showed that a database of $N$ items laid out in $d$ spatial dimensions can be searched in time of order $\sqrt{N}$ for $d>2$, and in time of order $\sqrt{N}\phantom{\rule{0.3em}{0ex}}\text{poly}(\mathrm{log}\phantom{\rule{0.3em}{0ex}}N)$ for $d=2$. We consider an alternative search algorithm based on a continuous-time quantum walk on a graph. The case of the complete graph gives the continuous-time search algorithm of Farhi and Gutmann, and other previously known results can be used to show that $\sqrt{N}$ speedup can also be achieved on the hypercube. We show that full $\sqrt{N}$ speedup can be achieved on a $d$-dimensional periodic lattice for $d>4$. In $d=4$, the quantum walk search algorithm takes time of order $\sqrt{N}\phantom{\rule{0.3em}{0ex}}\text{poly}(\mathrm{log}\phantom{\rule{0.3em}{0ex}}N)$, and in $d<4$, the algorithm does not provide substantial speedup.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.