Abstract
Machine learning algorithms perform well on identifying patterns in many different datasets due to their versatility. However, as one increases the size of the data, the computation time for training and using these statistical models grows quickly. Here, we propose and implement on the IBMQ a quantum analogue to K-means clustering, and compare it to a previously developed quantum support vector machine. We find the algorithm's accuracy comparable to the classical K-means algorithm for clustering and classification problems, and find that it becomes less computationally expensive to implement for large datasets as compared to its classical counterpart.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.