Abstract

We describe a new approach to modeling the optoelectronic properties of a terahertz-frequency quantum cascade laser (THz QCL) based on a quantum transmission line modelling (Q-TLM) method. Parallel quantum cascade transmission line modeling units are employed to describe the dynamic optical processes in a nine-well THz QCL in both the time and frequency domains. The model is used to simulate the current–power characteristics of a QCL device and good agreement is found with experimental measurements, including an accurate prediction of the threshold current and emitted power. It is also confirmed that the Q-TLM model can accurately predict the Stark-induced blue shift of the emission spectrum of the THz QCL with increasing injection current. Furthermore, we establish the new Q-TLM model to describe the properties of a THz QCL device incorporating a photonic lattice patterned on the laser ridge, by linking the transmission line structure to each scattering module. The predicted effects of the lattice structure on the steady-state emission spectra of the THz QCL, including the side-mode suppression, are found to be in good agreement with experimental results. Our Q-TLM modeling approach is a promising tool for the future design of THz QCLs and analysis of their temporal and spectral behaviors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.