Abstract

There is current significant interest in Fiber-to-the-Home (FTTH) networks, that is, end-to-end optical connectivity. Currently, it may be limited due to the presence of last-mile copper wire connections. However, in near future, it is envisaged that FTTH connections will exist, and a key offering would be the possibility of optical encryption that can best be implemented using Quantum Key Distribution (QKD). However, it is very important that the QKD infrastructure is compatible with the already existing networks for a smooth transition and integration with the classical data traffic. In this paper, we report the feasibility of using off-the-shelf telecommunication components to enable high performance Continuous Variable-Quantum Key Distribution (CV-QKD) systems that can yield secure key rates in the range of 100 Mbits/s under practical operating conditions. Multilevel phase modulated signals (m-PSK) are evaluated in terms of secure key rates and transmission distances. The traditional receiver is discussed, aided by the phase noise cancellation based digital signal processing module for detecting the complex quantum signals. Furthermore, we have discussed the compatibility of multiplexers and demultiplexers for wavelength division multiplexed Quantum-to-the-Home (QTTH) network and the impact of splitting ratio is analyzed. The results are thoroughly compared with the commercially available high-cost encryption modules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call