Abstract

Quantum Key Distribution (QKD) offers unconditional security in principle. Many QKD protocols have been proposed and demonstrated to ensure secure communication between two authenticated users. Continuous variable (CV) QKD offers many advantages over discrete variable (DV) QKD since it is cost-effective, compatible with current classical communication technologies, efficient even in daylight, and gives a higher secure key rate. Keeping this in view, we demonstrate a discrete modulated CVQKD protocol in the free space which is robust against polarization drift. We also present the simulation results with a noise model to account for the channel noise and the effects of various parameter changes on the secure key rate. These simulation results help us to verify the experimental values obtained for the implemented CVQKD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call