Abstract
We develop a quantum theory of electron confinement in metal nanofilms. The theory is used to compute the nonlinear response of the film to a static or low-frequency external electric field and to investigate the role of boundary conditions imposed on the metal surface. We find that the sign and magnitude of the nonlinear polarizability depends dramatically on the type of boundary condition used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.