Abstract

A quantum covering group is an algebra with parameters $q$ and $\pi$ subject to $\pi^2=1$ and it admits an integral form; it specializes to the usual quantum group at $\pi=1$ and to a quantum supergroup of anisotropic type at $\pi=-1$. In this paper we establish the Frobenius-Lusztig homomorphism and Lusztig-Steinberg tensor product theorem in the setting of quantum covering groups at roots of 1. The specialization of these constructions at $\pi=1$ recovers Lusztig's constructions for quantum groups at roots of 1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.