Abstract
A general method for constructing invariants for quantum supergroups is applied to obtain a closed formula for link polynomials. For type I quantum supergroups, a realization of the braid group and corresponding link polynomial is determined, for each irreducible representation of the quantum supergroup in a certain class. Although these realizations are not matrix representations in the usual sense, nevertheless link polynomials are defined which are generalizations of those previously obtained from quantum groups. To illustrate the theory, link polynomials corresponding to the defining representations of the quantum supergroups Uq [gl(m|n)], Uq [C (m + 1)] are determined explicitly.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have