Abstract

Structured light has become topical of late, where controlling light in all its degrees of freedom has offered novel states of light long predicted, enhanced functionality in applications, and a modern toolbox for probing fundamental science. Structuring light as single photons and entangled states allows the spatial modes of light to be used to encode a large alphabet, accessing high dimensional Hilbert spaces for fundamental tests of quantum mechanics and improved quantum information processing tasks. In this tutorial, we outline the basic concepts of high dimensional quantum states expressed in a basis of spatial modes (structured light) and explain how to create, control, and detect such quantum states in the laboratory with a focus on transverse spatial modes such as the orbital angular momentum and pixel (position) modes. Finally, we highlight some example applications of such quantum structured light, from communications to imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call