Abstract
Quantum stochastic models are developed within the framework of a measure entity. An entity is a structure that describes the tests and states of a physical system. A measure entity endows each test with a measure and equips certain sets of states as measurable spaces. A stochastic model consists of measurable realvalued function on the set of states, called a generalized action, together with measures on the measurable state spaces. This structure is then employed to compute quantum probabilities of test outcomes. We characterize those measure entities that are isomorphic to a quantum probability space. We also show that stochastic models provide a phase space description of quantum mechanics and a realistic model of spin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.