Abstract

Understanding molecular state evolution is central to many disciplines, including molecular dynamics, precision measurement, and molecule-based quantum technology. Details of the evolution are obscured when observing a statistical ensemble of molecules. Here, we report real-time observations of thermal radiation-driven transitions between individual states ("jumps") of a single molecule. We reversed these "jumps" through microwave-driven transitions, resulting in a twentyfold improvement in the time the molecule dwells in a chosen state. The measured transition rates showed anisotropy in the thermal environment, pointing to the possibility of using single molecules as in-situ probes for the strengths of ambient fields. Our approaches for state detection and manipulation could apply to a wide range of species, facilitating their uses in fields including quantum science, molecular physics, and ion-neutral chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.