Abstract

We analyze the quantum-state purity of heralded single photons produced from frequency-anti-correlated biphotons. We find that the quantum-state purity in time-frequency domain depends strongly on the response time uncertainty of the trigger-photon detector that heralds the generation of its paired photon. If the trigger response time is much shorter than the two-photon coherence time, the time-frequency quantum-state purity of heralded single photons approaches unity and the heralded single photon is in a nearly pure state. If the trigger response time is much longer than the two-photon coherence time, the heralded photon is then projected onto a mixed state. Making use of the time-frequency entanglement, heralded single photons with a well-defined temporal wave function or a frequency superposition state can be produced and engineered. This time-frequency entanglement allows for shaping heralded single photons through nonlocal spectral modulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.