Abstract

It is known that mixed quantum states are highly entropic states of imperfect knowledge (i.e., incomplete information) about a quantum system, while pure quantum states are states of perfect knowledge (i.e., complete information) with vanishing von Neumann entropy. In this paper, we propose an information geometric theoretical construct to describe and, to a certain extent, understand the complex behavior of evolutions of quantum systems in pure and mixed states. The comparative analysis is probabilistic in nature, it uses a complexity measure that relies on a temporal averaging procedure along with a long-time limit, and is limited to analyzing expected geodesic evolutions on the underlying manifolds. More specifically, we study the complexity of geodesic paths on the manifolds of single-qubit pure and mixed quantum states equipped with the Fubini-Study metric and the Sjoqvist metric, respectively. We analytically show that the evolution of mixed quantum states in the Bloch ball is more complex than the evolution of pure states on the Bloch sphere. We also verify that the ranking based on our proposed measure of complexity, a quantity that represents the asymptotic temporal behavior of an averaged volume of the region explored on the manifold during the evolution of the systems, agrees with the geodesic length-based ranking. Finally, focusing on geodesic lengths and curvature properties in manifolds of mixed quantum states, we observed a softening of the complexity on the Bures manifold compared to the Sjoqvist manifold.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call