Abstract

Radial basis function (RBF) network is a simple but useful neural network model that contains wide applications in machine learning. The training of an RBF network reduces to solve a linear system, which is time consuming classically. Based on HHL algorithm, we propose two quantum algorithms to train RBF networks. To apply the HHL algorithm, we choose using the Hamiltonian simulation algorithm proposed in [P. Rebentrost, A. Steffens, I. Marvian and S. Lloyd, Phys. Rev. A 97, 012327, 2018]. However, to use this result, an oracle to query the entries of the matrix of the network should be constructed. We apply the amplitude estimation technique to build this oracle. The final results indicate that if the centers of the RBF network are the training samples, then the quantum computer achieves exponential speedup at the number and the dimension of training samples over the classical computer; if the centers are determined by the K-means algorithm, then the quantum computer achieves quadratic speedup at the number of samples and exponential speedup at the dimension of samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.