Abstract

We review certain emergent notions on the nature of spacetime from noncommutative geometry and their radical implications. These ideas of spacetime are suggested from developments in fuzzy physics, string theory, and deformation quantisation. The review focuses on the ideas coming from fuzzy physics. We find models of quantum spacetime like fuzzy $S^4$ on which states cannot be localised, but which fluctuate into other manifolds like $ CP^3$ . New uncertainty principles concerning such lack of localisability on quantum spacetimes are formulated.Such investigations show the possibility of formulating and answering questions like the probabilty of finding a point of a quantum manifold in a state localised on another one. Additional striking possibilities indicated by these developments is the (generic) failure of $CPT$ theorem and the conventional spin-statistics connection. They even suggest that Planck's `` constant '' may not be a constant, but an operator which does not commute with all observables. All these novel possibilities arise within the rules of conventional quantum physics,and with no serious input from gravity physics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.