Abstract

Quantum evaporation may occur in a variety of systems such as superfluids, Bose-Einstein condensates, and gravitational black holes (Hawking radiation). However, to date all predictions are based on semiclassical models, e.g., the Einstein equations and classical space-time metric for a black hole and only the fluctuations are quantized. Here we use a fully quantized dynamical equation, the quantum nonlinear Schr\odinger equation, to study the evolution of quantum solitons. As a result of quantum fluctuations in the center-of-mass position, the expectation value of the quantum soliton width increases and concomitantly evaporates through the emission of frequency-entangled photon pairs. The frequency of this emission decreases as the soliton evaporates due to the soliton spreading. In the final phase, the soliton mean field collapses irreversibly into a state with zero mean amplitude. These results may provide insight to quantum evaporation in other systems where a full quantum description is still to be developed and highlights that even classically stable systems may also be subject to quantum evaporation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.