Abstract

This paper is the first part of a two-part study on the quantum nonlinear Schr\odinger equation [the second paper follows: Lai and Haus, Phys. Rev. A 39, 854 (1989)]. The quantum nonlinear Schr\odinger equation is solved analytically and is shown to have bound-state solutions. These bound-state solutions are closely related to the soliton phenomenon. This fact has not been pursued in the literature. In this paper we use the time-dependent Hartree approximation to construct approximate bound states and then superimpose these bound states to construct soliton states. This construction enables us to study the quantum effects of soliton propagation and soliton collisions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.