Abstract

Tuning a material to the cusp between two distinct ground states can produce physical properties that are unlike those in either of the neighbouring phases. Advances in the fabrication and control of quantum systems have raised the tantalizing prospect of artificial quantum simulators that can capture such behaviour. A tunable array of coupled qubits should have an appropriately rich phase diagram, but realizing such a system with either tunnel-coupled semiconductor quantum dots or metal nanostructures has proven difficult. The challenge for scaling up to clusters or lattices is to ensure that each element behaves essentially identically and that the coupling between elements is uniform, while also maintaining tunability of the interactions. Here we study a nanoelectronic circuit comprising two coupled hybrid metal–semiconductor islands, combining the strengths of both materials to form a potentially scalable platform. The semiconductor component allows for controllable inter-site couplings at quantum point contacts, while the metal component’s effective continuum of states means that different sites can be made equivalent by tuning local potentials. The couplings afforded by this architecture can realize an unusual quantum critical point resulting from frustrated Kondo interactions. The observed critical behaviour matches theoretical predictions, verifying the success of our experimental quantum simulation. The quantum critical behaviour of a two-impurity Kondo model variant is observed in a system of hybrid-semiconductor islands that could provide a scalable platform for solid-state quantum simulation

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.