Abstract

The radial basis function (RBF) method is widely used for the numerical solution of the Poisson problem in high dimension, where the approximate solution can be found by solving a large system of linear equations. We demonstrate that the RBF method can be accelerated on a quantum computer by using an efficient quantum algorithm for linear equations. We compare the theoretical performance of our quantum algorithm with that of a standard classical algorithm, and find that the quantum algorithm can achieve a polynomial speedup.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.