Abstract
Radial Basis Function (RBF) methods have become important tools for scattered data interpolation and for solving partial differential equations (PDEs) in complexly shaped domains. When the underlying function is sufficiently smooth, RBF methods can produce exceptional accuracy. However, like other high order numerical methods, if the underlying function has steep gradients or discontinuities the RBF method may/will produce solutions with non-physical oscillations. In this work, a rational RBF method is used to approximate derivatives of functions with steep gradients and discontinuities and to solve PDEs with such solutions. The method is non-linear and is more computationally expensive than the standard RBF method. A modified partition of unity method is discussed as an way to implement the rational RBF method in higher dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.