Abstract
We implement numerical linked cluster expansions (NLCEs) to study dynamics of lattice systems following quantum quenches, and focus on a hard-core boson model in one-dimensional lattices. We find that, in the nonintegrable regime and within the accessible times, local observables exhibit exponential relaxation. We determine the relaxation rate as one departs from the integrable point and show that it scales quadratically with the strength of the integrability breaking perturbation. We compare the NLCE results with those from exact diagonalization calculations on finite chains with periodic boundary conditions, and show that NLCEs are far more accurate.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have