Abstract

We study the phase diagram and the quantum phase transitions of a site-diluted two-dimensional O(3) quantum rotor model by means of large-scale Monte Carlo simulations. This system has two quantum phase transitions: a generic one for small dilutions and a percolation transition across the lattice percolation threshold. We determine the critical behavior for both transitions and for the multicritical point that separates them. In contrast to the exotic scaling scenarios found in other random quantum systems, all these transitions are characterized by finite-disorder fixed points with power-law scaling. We relate our findings to a recent classification of phase transitions with quenched disorder according to the rare region dimensionality, and we discuss experiments in disordered quantum magnets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.