Abstract

We study quantum phase transitions in the Bose-Fermi Kondo problem, where a local spin is coupled to independent bosonic and fermionic degrees of freedom. Applying a second order expansion in the anomalous dimension of the Bose field we analyze the various non-trivial fixed points of this model. We show that anisotropy in the couplings is relevant at the SU(2) invariant non Fermi liquid fixed points studied earlier and thus the quantum phase transition is usually governed by XY or Ising-type fixed points. We furthermore derive an exact result that relates the anomalous exponent of the Bose field to that of the susceptibility at any finite coupling fixed point. Implications on the dynamical mean field approach to locally quantum critical phase transitions are also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call