Abstract

Solving optimisation problems is a promising near-term application of quantum computers. Quantum variational algorithms (QVAs) leverage quantum superposition and entanglement to optimise over exponentially large solution spaces using an alternating sequence of classically tunable unitaries. However, prior work has primarily addressed discrete optimisation problems. In addition, these algorithms have been designed generally under the assumption of an unstructured solution space, which constrains their speedup to the theoretical limits for the unstructured Grover’s quantum search algorithm. In this paper, we show that QVAs can efficiently optimise continuous multivariable functions by exploiting general structural properties of a discretised continuous solution space with a convergence that exceeds the limits of an unstructured quantum search. We present the quantum multivariable optimisation algorithm and demonstrate its advantage over pre-existing methods, particularly when optimising high-dimensional and oscillatory functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.