Abstract

Abstract We present a tapered Paul trap whose radio frequency electrodes are inclined to the symmetric axis of the endcap electrodes, resulting in a funnel-shaped trapping potential. With this configuration, a charged particle confined in this trap has its radial degrees of freedom coupled to that of the axial direction. The same design was successfully used to experimentally realize a single-atom heat engine, and with this setup amplification of zeptonewton forces was implemented. In this paper, we show the design, implementation, and characterization of such an ion trap in detail. This system offers a high level of control over the ion's motion. Its novel features promise applications in the field of quantum thermodynamics, quantum sensing, and quantum information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.