Abstract

We investigate the behavior of the fundamental and second-harmonic fields in phase-matched traveling plane-wave second-harmonic generation, using the full-operator equations of motion. We find that, after a certain interaction length, both the macroscopic and quantum-statistical properties of the harmonic and fundamental fields are qualitatively different from those found in previous analyses. The mean fields do not vary in a monotonic way, but oscillate with the propagation length, leading to an unexpected periodic revival of the fundamental field, triggered by the quantum fluctuations always present in the mode. Accordingly, the amplitude noise of the fundamental, previously predicted to be perfectly squeezed for long interaction lengths, actually reaches a very small minimum for a definite length, then increases again.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.