Abstract

Quadrature-amplitude and phase squeezing are theoretically investigated in a planar waveguide geometry where the use of a linear grating fabricated on top of the waveguide reproduces a photonic bandgap structure. The introduction of a nonlinear grating, obtained with a modulation of the nonlinear susceptibility χ(2), provides an additional degree of freedom that allows, together with the linear grating, tuning of the fundamental field in a selected resonance of the transmission spectrum and, at the same time, control of the phase-matching condition between the fundamental and second-harmonic fields. The results show that quadrature-amplitude squeezing is achieved for the fundamental field, increasing the second-harmonic input intensity. The second-harmonic field is tuned in the passband of the photonic bandgap. The low nonlinear conversion efficiency, given by a suitable selection of the mismatch, gives rise to the possibility of having a fundamental field of quite the same intensity, but less noisy than at the entry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.