Abstract

In this paper, we propose a novel quantum multiple access technique based on optical coherent states. The information of several coherent state optical qubits is combined into a single qudit, which is the superposition of almost orthogonal coherent states. The original information is encoded into a new Hilbert space with the help of a quantum multiplexer (QMUX) and then recovered at the other end with a quantum demultiplexer (QDEMUX). We introduce the optical tools that complete the coherence state quantum computation model and give the desired circuits. The proposed system can admit a number of users above the optimal limit at the cost of a degradation of the transmitted data. In this and some other aspects, it can be regarded as a quantum analogue of classical Code Division Multiple Access techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call