Abstract

We perform a systematic quantum Monte Carlo study of the pairing correlation in the S(4) symmetric microscopic model for iron-based superconductors. It is found that the pairing with an extensive s-wave symmetry robustly dominates over other pairings at low temperature in a reasonable parameter region regardless of the change of Fermi surface topologies. The pairing susceptibility, the effective pairing interaction, and the (π, 0) antiferromagnetic correlation strongly increase as the on-site Coulomb interaction increases, indicating the importance of the effect of electron-electron correlation. Our nonbiased numerical results provide a unified understanding of the superconducting mechanism in iron pnictides and iron chalcogenides and demonstrate that the superconductivity is driven by strong electron-electron correlation effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.