Abstract
Using modern tools from the geometric theory of Hamiltonian systems it is shown that electronic excitations in diatoms which can be modelled by the two-centre problem exhibit a complicated case of classical and quantum monodromy. This means that there is an obstruction to the existence of global quantum numbers in these classically integrable systems. The symmetric case of H+2 and the asymmetric case of H He++ are explicitly worked out. The asymmetric case has a non-local singularity causing monodromy. It coexists with a second singularity which is also present in the symmetric case. An interpretation of monodromy is given in terms of the caustics of invariant tori.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.