Abstract

In order to better understand Kondo insulators, we have studied both the symmetric and asymmetric Anderson lattices at half-filling in one dimension using the density matrix formulation of the numerical renormalization group. We have calculated the charge gap, spin gap and quasiparticle gap as a function of the repulsive interaction U using open boundary conditions for lattices as large as 24 sites. We find that the charge gap is larger than the spin gap for all U for both the symmetric and asymmetric cases. RKKY interactions are evident in the f-spin-f-spin correlation functions at large U in the symmetric case, but are suppressed in the asymmetric case as the f-level approaches the Fermi energy. This suppression can also be seen in the staggered susceptibility and it is consistent with neutron scattering measurements in CeNiSn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.