Abstract

The development of methods for the quantum mechanical study of macromolecules has always been an important challenge in theoretical chemistry. Nowadays, the techniques proposed in this context can be used to investigate very large systems and can be subdivided into two main categories: fragmentation and embedding strategies. In this paper, by modifying and improving the local self-consistent field approach originally proposed for quantum mechanics/molecular mechanics techniques, we introduce the new multiscale embedding quantum mechanics/extremely localized molecular orbital (QM/ELMO) method. The new strategy enables treatment of chemically relevant regions of large biological molecules through usual methods of quantum chemistry while describing the remaining parts of the systems by means of frozen extremely localized molecular orbitals transferred from properly constructed libraries. Test calculations have shown the correct functioning and the high reliability of the new approach, thus anticipating its possible applications to different fields of physical chemistry, such as rational drug design and structural refinements of proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.