Abstract
The Bell-Clauser-Horne-Shimony-Holt inequality can be used to show that no local hidden-variable theory can reproduce the correlations predicted by quantum mechanics (QM). It can be proved that certain QM correlations lead to a violation of the classical bound established by the inequality, while all correlations, QM and classical, respect a QM bound (the Tsirelson bound). Here, we show that these well-known results depend crucially on the assumption that the values of physical magnitudes are scalars. The result implies, first, that the origin of the Tsirelson bound is geometrical, not physical; and, second, that a local hidden-variable theory does not contradict QM if the values of physical magnitudes are vectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.