Abstract

Two-dimensional (2D) quantum mechanical analytical modeling has been presented in order to evaluate the 2D potential profile within the active area of FinFET structure. Various potential profiles such as surface, back to front gate and source to drain potential have been presented in order to appreciate the usefulness of the device for circuit simulation purposes. As we move from source end of the gate to the drain end of the gate, there is substantial increase in the potential at any point in the channel. This is attributed to the increased value of longitudinal electric field at the drain end on application of a drain to source voltage. Further, in this paper, the detailed study of threshold voltage and its variation with the process parameters are presented. A threshold voltage roll-off with fin thickness is observed for both theoretical and experimental results. The fin thickness is varied from 10nm to 60nm. The percentage roll-off for our model is 77% and that for experimental result it is 75%. Form the analysis of source/drain (S/D) resistance, it is observed that for a fixed fin width, as the channel length increases, there is an enhancement in the parasitic S/D resistance. This can be inferred from the fact that as the channel length decreases, quantum confinement along the S/D direction becomes more extensive. For our proposed devices a close match is obtained with the results through the analytical model and reported experimental results, thereby validating our proposed QM analytical model for DG FinFET device.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call