Abstract
AbstractQuantum machine learning (QML) can be employed in solving complicated machine learning tasks although the performance in examining the regression processes is only barely understood. Knowledge gaps are intended to be closed by studying modelling performance of QML in regression tasks, with emphasis being dedicated to scaling up and ability to resist noise. The regression part offers the following functions that include straight line and complex operations. Furthermore, the authors employ quantum neural networks generated using Qiskit to perform experiments. The results demonstrate that QML has a remarkable level of accuracy in basic regressions, reaching a maximum of 97%. Nevertheless, there are difficulties in representing intricate functions, such as 5 × cos(x), which results in a noticeable decline in performance. The work deals with the influence of noise and IERs from imperfect hardware on the efficiency of QML algorithms providing insight into the core obstacles. The result of a detailed examination of the results that have tested the powers and limits of QML in the development of regression applications is represented. The future direction of research and development will be defined by the results obtained in it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.