Abstract
Recent advances in quantum computing and machine learning have brought about a promising intersection of these two fields, leading to the emergence of quantum machine learning (QML). However, the integration of quantum computing and machine learning poses several challenges. One of the prominent challenges lies in the presence of barren plateaus (BP) in QML algorithms, particularly in quantum neural networks (QNNs). Recent studies have successfully identified the fundamental causes underlying the existence of BP in QNNs. This paper presents a framework designed to explore the interplay of multiple factors contributing to the BP problem in quantum neural networks (QNNs), which poses a critical challenge for the practical applications of QML. We focus on the combined influence of data encoding, qubit entanglement, and ansatz expressibility in hybrid quantum neural networks (HQNNs) for multi-class classification tasks. Our framework aims to empirically analyze the joint impact of these factors on the training landscape of HQNNs. Our results show that the occurrence of the BP problem in HQNNs is contingent upon the expressibility of the underlying ansatz and the type of the adopted data encoding technique. Additionally, we observe that qubit entanglement also plays a role in exacerbating the BP problem. Leveraging various evaluation metrics for classification tasks, we systematically evaluate the performance of HQNNs and provide recommendations tailored to different constraint scenarios. Our findings emphasize the significance of our framework in addressing the practical success of QNNs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Parallel, Emergent and Distributed Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.