Abstract

Climate change and its impact on global sustainability are critical challenges, demanding innovative solutions that combine cutting-edge technologies and scientific insights. Quantum machine learning (QML) has emerged as a promising paradigm that harnesses the power of quantum computing to address complex problems in various domains including climate change and sustainability. In this work, we survey existing literature that applies quantum machine learning to solve climate change and sustainability-related problems. We review promising QML methodologies that have the potential to accelerate decarbonization including energy systems, climate data forecasting, climate monitoring, and hazardous events predictions. We discuss the challenges and current limitations of quantum machine learning approaches and provide an overview of potential opportunities and future work to leverage QML-based methods in the important area of climate change research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.