Abstract
We theoretically study both the technical and the fundamental quantum limitations of the sensitivity of a resonant optical gyroscope based on a high finesse optical cavity. We show that the quantum back action associated with the resonantly enhanced optical cross and self-phase modulation results in the nonlinear optics-mediated standard quantum limit (SQL) of the angle random walk of the gyroscope. We also found that the measurement sensitivity of a generic optical gyroscope is fundamentally limited due to the opto-mechanical properties of the device. Ponderomotive action of the light interrogating the gyroscope cavity leads to the opto-mechanical SQL of the rotation angle detection. The uncorrelated quantum fluctuations of power of clockwise and counterclockwise light waves result in optical power-dependent uncertainty of the angular gyroscope position.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have