Abstract
Quantum full adders play a key role in the design of quantum computers. The efficiency of a quantum adder directly determines the speed of the quantum computer, and its complexity is closely related to the difficulty and the cost of building a quantum computer. The existed full adder based on R gate is a great design but it is not suitable to construct a quantum multiplier. We show the quantum legitimacy of some common reversible gates, then use R gate to propose a new design of a quantum full adder. We utilize the new designed quantum full adder to optimize the quantum multiplier which is based on R gate. It is shown that the new designed one can be optimized by a local optimization rule so that it will have lower quantum cost than before.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.