Abstract
We present multiple-residue integral formulas for partial sums in the basis of link patterns of the polynomial solution of the level-1 \(U_q (\widehat{\mathfrak{s}\mathfrak{l}_2 })\) quantum Knizhnik-Zamolodchikov equation at arbitrary values of the quantum parameter q. These formulas allow rewriting and generalizing a recent conjecture of Di Francesco connecting these sums to generating polynomials for weighted totally symmetric self-complementary plane partitions. We reduce the corresponding conjectures to a single integral identity, yet to be proved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.